Diferensial dari sin²(2x-3)?
Matematika
mufidafa
Pertanyaan
Diferensial dari sin²(2x-3)?
2 Jawaban
-
1. Jawaban safiralutfianti
f(x)=sin^2(2x-3). f(x)=sin^2u. f(x)=w^2
misal u=(2x-3). w=sin u
du/dx=2. dw/du= cos u. df/dw =2w
f aksen (x) = df/dx = df/dw.dw/du.du/dx
df/dx= 2w.( cos u).(2)
df/dx=4.w.(cos u)
df/dx=4. sin u .(cos u)
df/dx=4 sin(2x-3)(cos(2x-3))
#smga brmnfaat # -
2. Jawaban arsetpopeye
f(x) = sin^2 (2x - 3) = (sin (2x - 3))^2
f'(x) = 2 sin (2x - 3) . cos (2x - 3) . 2
f'(x) = 4 sin (2x - 3) cos (2x - 3)
Lebih sederhana lagi :
f'(x) = 2 . 2 sin (2x - 3) cos (2x - 3)
= 2 . sin 2(2x - 3)
= 2 sin (4x - 6)